Chlorophyll Biosynthetic Reactions during Senescence of Excised Barley (Hordeum vulgare L. cv IB 65) Leaves.

نویسندگان

  • P. Hukmani
  • B. C. Tripathy
چکیده

The chlorophyll (Chl) biosynthetic reactions were monitored during senescence of dark-incubated excised barley (Hordeum vulgare L. cv IB 65) leaves floated in double-distilled water or kinetin solution. Kinetin abolished the degradation of Chl but failed to check the net degradation of protochlorophyllide (Pchlide), suggesting that different sets of enzymes, i.e. kinetin sensitive and insensitive, are responsible for the degradation of Chl and Pchlide, respectively. Upon exposure of the leaves to light, the dark-accumulated Pchlide was efficiently phototransformed to chorophyllide (Chlide), even on the 7th d of dark incubation, demonstrating that the activity of Pchlide reductase, one of the late enzymes of the Chl biosynthetic pathway, is not substantially affected during senescence. The senescing leaves continued to synthesize Pchlide and Chlide until the 7th d, although at a reduced rate (20% of the 1st d). The decline of the rate of synthesis of Pchlide and Chlide is due to the loss of activity of two early enzymes of the Chl biosynthetic pathway, i.e. 5-aminolevulinic acid dehydratase and porphobilinogen deaminase. Kinetin substantially checked the loss of activity of these two enzymes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and characterization of a urobilinogenoidic chlorophyll catabolite from Hordeum vulgare L.

A new type of chlorophyll catabolite was isolated from extracts of de-greened primary leaves of barley (Hordeum vulgare cv. Lambic). Its constitution was elucidated by one-dimensional and two-dimensional [(1)H,(13)C]-homo- and heteronuclear NMR spectroscopic techniques and by high resolution mass spectroscopy. The isolated catabolite, a water-soluble, colorless, and nonfluorescent linear tetrap...

متن کامل

Chloroplast Biogenesis 60 : Conversion of Divinyl Protochlorophyllide to Monovinyl Protochlorophyllide in Green(ing) Barley, a Dark Monovinyl/Light Divinyl Plant Species.

In higher plants, most of the chlorophyll a is formed via the divinyl and monovinyl chlorophyll monocarboxylic biosynthetic routes. These two routes are strongly interconnected prior to protochlorophyllide formation in barley (Hordeum vulgare L. cv Morex), a dark monovinyl-light divinyl plant species, but not in cucumber (Cucumis sativus L. cv Beit Alpha MR), a dark divinyl-light divinyl plant ...

متن کامل

The abundance of minor chlorophyll a/b-binding proteins CP29 and LHCI of barley (Hordeum vulgare L.) during leaf senescence is controlled by light.

The abundance of the minor light-harvesting complexes CP29 and LHCI generally declines during the senescence of barley leaves. When light intensity declined due to clouding during the senescence of flag leaves from barley plants grown under field conditions, the levels of both light-harvesting complexes temporarily increased in parallel with photosystem II-efficiency [F(v)/F(m)]. A sudden shift...

متن کامل

Loss of Ribulose 1,5-Diphosphate Carboxylase and Increase in Proteolytic Activity during Senescence of Detached Primary Barley Leaves.

Symptoms typical of senescence occurred in green detached primary barley (Hordeum vulgare L.) leaves placed in darkness and in light. Chlorophyll, total soluble protein, ribulose 1,5-diphosphate carboxylase protein and activity each progressively decreased in darkness and to a lesser extent in light. In all treatments most of the total soluble protein lost was accounted for by a decrease in rib...

متن کامل

Chlorophyll b to chlorophyll a conversion precedes chlorophyll degradation in Hordeum vulgare L.

This study reveals by in vivo deuterium labeling that in higher plants chlorophyll (Chl) b is converted to Chl a before degradation. For this purpose, de-greening of excised green primary leaves of barley (Hordeum vulgare) was induced by permanent darkness in the presence of heavy water (80 atom % (2)H). The resulting Chl a catabolite in the plant extract was subjected to chemical degradation b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 105 4  شماره 

صفحات  -

تاریخ انتشار 1994